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Summary: A remarkably mild procedure for the synthesis of 2-aryl substituted carbapenems via a palladium 
catalyzed coupling reaction of a vinyl triflate with aryl stannanes is described. Employing Pd2(DBA)sCHCls 
as the catalyst and tris(2,4,6-trimethoxyphenyl)phosphine as the ligand provides generous yields of the 
desired 84actams. Reaction times are brief while reaction temperatures never exceed ambient. 

The discovery of thienamycinl in 1976 initiated a barrage of synthetic activity associated with this 

class of carbapenem antibiotic. Historically, research efforts directed toward the syntheses of carbapenem 

analogs have focused primarily on sulfur bearing substituents at C-2. 2 Less abundant are examples of carbon 

based substituents at C-2,3 especially aryL4 partially due to the somewhat formidable routes to procure 

them.5 In connection with the ongoing program directed toward the design and synthesis of potent j3-lactam 

antibiotics in our laboratories, an efficient process for the preparation of carbapenem analogs bearing carbon 

substituents at C-2 became highly desirable. The readily available 8-keto ester 1, an advanced intermediate 

in the total synthesis of thienamycin,s was an obvious candidate for further elaboration. Ultimately, 

formation of a carbon-carbon bond at C-2 would manifest itself in the form of a palladium(O) mediated cross- 

coupling reaction7 between a requisite aryl stannane and the enol triflate derived from 1. 
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The conditions of the palladium cross-coupling sequence are illustrated in Scheme 2. Treatment of the 

bicyclic 8-keto ester 1 with Tf20 and diisopropylamine in THF at -76 “C provided the enol triflate which was 

extremely labile.8 The fact that this enol triflate decomposed when subjected to the Stille cross-coupling 

conditions [Pd(PPhs)d, ZnClq, an aryl stannane and heatI necessitated the development of an in situ 

protection of the C-8 hydroxyl. This could be easily accomplished by further treatment of the initially formed 

enol triflate with Et8N and TMSOTf in THF at -78 “C. It was this metastable intermediate9 which proved to be 

most practical for the cross-coupling reaction. 
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Although 1 had been successfully activated and protected, the subsequent cross-coupling reaction once 

again proved fruitless under the conventional Stille conditions. However, employing the conditions reported 

by Farina, et afioa did provide the desired carbapenem, albeit in modest yield. This report prompted us to 

examine a variety of phosphine ligands in conjunction with the catalyst tris- 

(dibenzyiideneacetone)dipalladium-chloroform complex. t 1 The ligands that we studied are presented in 

descending order of effectiveness: tris(2,4,6-trimethoxyphenyl)phosphine; tris(2,6- 

dimethoxyphenyl)phosphine; tris(2-furyl)phosphine I tris(4-methoxyphenyi)phosphine; tri- 

phenylphosphine. The combination of 2 mol % Pd2(DBA)sCHClj and 8 mol % tris(2,4,6- 

trimethoxyphenyl)phosphine permitted the coupling reaction to proceed smoothly and rapidly at room 

temperature (see Scheme 2). Thus a new phosphine ligand unprecedented in any Pd(0) catalyzed cross- 

coupling reaction of triflates and stannanes.12 namely tris(2,4,6-trimethoxyphenyl)phosphine,ts proved to 

be the most effective. These mild conditions preserved the integrity of the sensitive 8-lactam moiety 

allowing ample yields of the desired products to be obtained. 

Our results suggest that electron donating groups on the phosphine llgand enhance both the rate and the 

yield of the coupling to a great extent. It is hypothesized that these electron releasing groups facilitate the 

oxidative addition of the enol triflate to the palladium by rendering the palladium(O) intermediate more 

electron rich [therefore enabling an easier oxidation of palladium(O) to pailadium(ll)] while perhaps at the 

same time accelerating the reductive elimination step due to a steric compression effect.14*15 

That this method would indeed be a viable route to 2-arylcarbapenem antibiotics is illustrated in 

Schemes 2 8 3. In one operation, 1 could be converted to the phenyl derivative 2 in 67% yield.16 A variety 

of functionaiized aryl stannanes as well as heteroaryls were found to couple smoothly17 (see Table). It is 

interesting to note that an earlier report by Stiile7b suggests that aryl stannanes are poorly reactive when 

subjected to palladium catalyzed coupling reactions with enol triflates. 

The preparation of the fully deprotected carbapenem is depicted in Scheme 3. Removal of the 

trimethyisilyl and the p-nitrobenzyl groups was achieved in a “one-pot” sequence by initial treatment of 2 

with 0.25-0.50 equivalents of AcOH at 35-40°C followed by hydrogenolysis over PdlC at ambient 

temperature. The known p-lactam carbapenem antibacterial 34c was obtained in 40% yield.‘6 

scheme 3 

~~‘““;;;~ou- *m 

2 a 

In summary, a new route to 2-arylcarbapenems has been developed. The process is mild, efficient and 

will tolerate a wide variety of functional groups. Further investigation directed toward the extension of this 

method to the delivery of acetylenic, alkenyi, and alkyl tin reagents is currently underway. 
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